

Moderation

調節 = 交互作用

Kit-Tai Hau侯傑泰 JianFang Chang常建芳

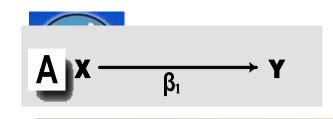
The Chinese University of Hong Kong

Based on Marsh, H. W., Hau, K. T., Wen, Z., Nagengast, B., & Morin, A. J. S. (in press). Moderation. In Little, T. D. (Ed.), Oxford Handbook of Quantitative Methods. New York: Oxford University Press.

Introduction

• Examples

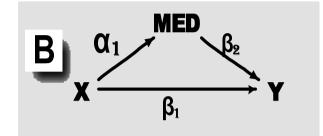
- Ed Psych: effects of an instructional technique interact with students' characteristics
- Dev Psych: effects of a variable interact with age
- Soc Psych: effects of individual characteristic depends on Group
- Organizational Psych: employee characteristics × workplace characteristics
- Moderator: variable affects direction and/or strength of relation between indep var and dep var, typically defined as $X_1 \times X_2$
- \bigcirc (Moderation = interaction) \neq mediation



Mediation (MED) vs Moderation (MOD) X = predictor variable

Y = outcome variable

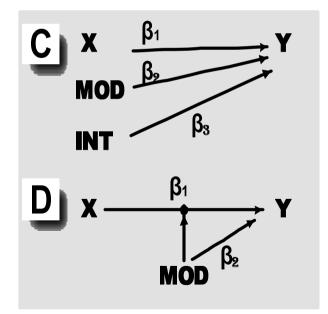
INT = interaction



A: no mediation or moderation

B: effect of X on Y mediated in part by MED; total mediation if direct effect of X on Y is zero ($\beta 1=0$) or partial medication (if $\beta 1\neq 0$); indirect effect of X on Y = $\alpha_1 \times \beta_2$

C, D: represent interaction effect; MOD moderates the relation between X and Y



Introduction

- Moderator: variable that affects the direction and/or strength of relationship between independent (predictor) variable and dependent (outcome) variable
- when/for whom does X has a stronger/ weaker relation/effect on Y?

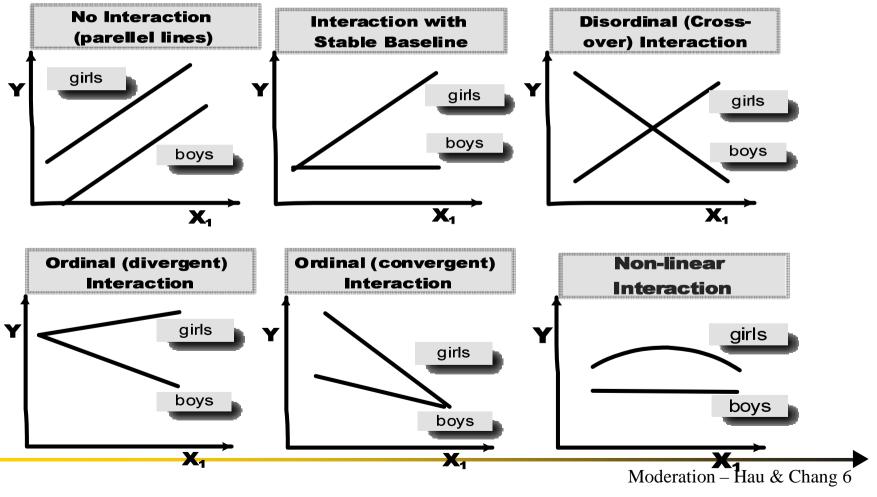
Introduction

Traditional (nonlatent) Approaches

- Interaction between two manifest variables (X_1, X_2) on outcome (Y)
 - \bullet X₁, X₂ small number of categories: ANOVA
 - X_1 , X_2 cont., regression to estimate main and int'n $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + e$
 - Helpful to graph if interaction is significant
 - Empirical interactions typically small, non-sig, substantial measurement error reduces power of sig test
 - Latent interaction controls for measurement error, increase power, provide more defensible interpretation of interaction

Graphs of Interactions

• inter'n sig • Graph to understand nature



Categorical Variables: Analysis of Variance (ANOVA)

- Null: neither predictor depends on value of other
- tempt to transform continuous variables into ANOVA approach (M split into high/low group)
- Problems: (i) reduce reliability (loss power), (ii) reduce var explained by original variables, (iii) no summary estimate of strength of interaction, (iv) difficult to detect non linear effects
- Transform only when categorization is natural (e.g., minimal passing score)
- Summary: almost never transform cont var -> categories for ANOVA

Separate Group Multiple Regression

- One indep var is categorical (few levels, e.g., gender), another indep var continuous → tempted to use separate group regression
- Inter'n = differences between unstd regression coefficients, possible sig test for 2 groups
- Weakness: not facilitate interpretation of effects (inter'n sig? uncertain); reduce power due to small N in each group; one IV must be truly categorical
- can use the more general approach

Moderated Multiple Regression Approach

- $Y = b_0 + b_1 X_1 + b_2 X_2 + e$
- effect of X_2 moderated by $X_1 \rightarrow Y = (b_0 + b_1 X_1) + (b_2 + b_3 X_1) X_2$
- $Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2 + e$ standardized \Rightarrow $Z_Y = \beta_{Z0} + \beta_{Z1} Z_{X1} + \beta_{Z2} Z_{X2} + \beta_{Z3} Z_{X1} Z_{X2} + e_Z$ $\beta_{Z1} = \text{change in } Y \text{ (in SD unit) if } X_1 \text{ change 1 } SD \text{ at } X_2 = 0$
- Regression plots represent predicted values based on the model (not raw data)
- More than 2 groups -> dummy/effect coding

 $X_1=1$

• Use meaningful zero point; typically at 0, ± 1 (or 2)

 $X_1=0$

SD $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$ $Y = \beta_0$ $Y = \beta_0$ $X_2 = 1$ $X_2 = 0$ $Slope = \beta_1$

- Effects of X_1 and X_2 on Y are not unconditional main effect; depends on values of other variable
- X_1, X_2 seldom take 0 (or arbitrary) \rightarrow regression wt on centered and std variables often more useful
- Std coefficients not straightforward from commercial stat packages; to obtain:
 - lacktriangle Std (z-score) all variables Z_Y , Z_{X1} , Z_{X2}
 - form interaction term = $Z_{X1} \times Z_{X2}$ (but not re-std)
 - Predict Z_Y , with Z_{X1} , Z_{X2} , $Z_{X1}Z_{X2}$, use t-values, and report unstd coef as appropriate std solutions

- regression models testing the interaction term must contain the main effects of predictor variables (X_1, X_2)
- for categorical var involving more then 2 dummy var, all related product terms entered simultaneously, test sig of change in R^2 with/without interaction terms
- covariates (gender, age) generally added as 1st set of variables (but check rationale)
- Regions of significant (range of values of moderator in which simple slopes are significant can be plotted (see Preacher et al. 2006 J Ed Beh Stat 31, 437-448)

- Interaction Point: for disordinal (crossing) interaction, the intersection point for X_1 as the moderator, $X_2 = -b_1/b_3$
- Power in detecting interactions: difficult in finding substantially meaningful, statistically significant interactions because
 - Overall model errors in non-expt studies generally larger than controlled expt
 - Measurement are exaggerated when multiplied to form prouducts

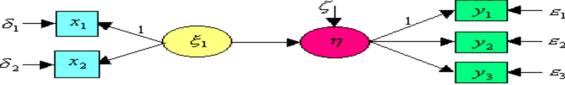
- Magnitude of inter'n constrained in field studies when researchers cannot assign participants to optional levels of predictor variables
- Detect inter'n compromised by nonlinearitie of effects
- To have sufficient power:
 - Large N
 - Similar N across subgroups
 - Avoid restriction of range
 - High reliability scales

Latent Variable Approaches

- Two Broad categories
 - at least one variable involved is categorical with few categories (e.g., male/female) →
 multiple group SEM
 - both variables are continuous and latent → various approaches and best practice still evolving

Latent Variable Approach Multiple Group Analysis

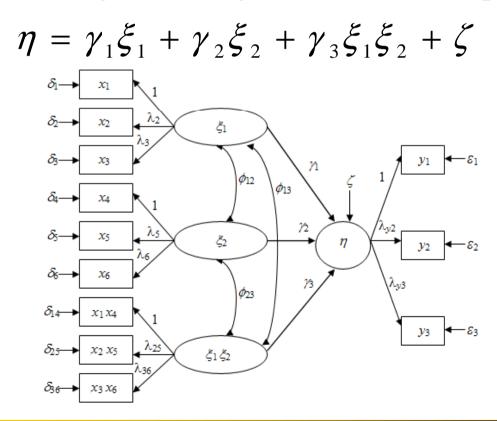
• latent variable $(\xi_1) \times$ observed categorical variable $(X_2) \rightarrow$ latent variable (η)



- \bullet X_2 small number of naturally existing categories, as grouping var
- test: invariance of $\xi_1 \rightarrow \eta$ effects over multiple groups; decline in goodness of fit with invariance constraint
- easily implemented in most SEM software
- problems: limitation in interpretation of the interaction, reduce power (small N), ignore measurement error categorizing var
- Not recommended, unless it is a true catergorial var with small number of categories with at least moderate sample sizes

Latent Variable Approaches Full Latent (variable) Approach

• Kenny & Judd (1984) proposed an ingenious heuristic model by constraining of loadings/variances of the product term



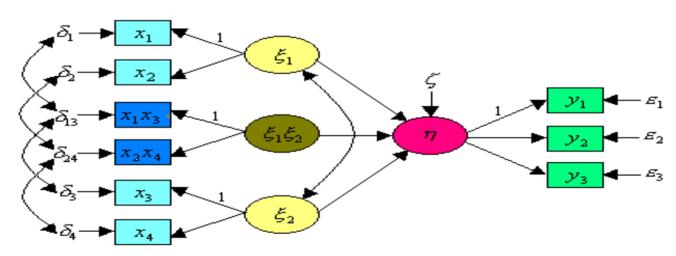
Latent Variable Approach Main Issues

- different ways to form the product indicator; How many product indicators? How to form best set?
- many constraints on parameters make the method tedious /difficulty, are they absolutely necessary?
- even if both ξ_1 ξ_2 have mean of zero, product term ξ_1 ξ_2 mean is not zero; mean structure complicates the application, is it really necessary?
- typical software do not provide appropriate SE for std effects, more serious with interaction model, how to obtain appropriate std solution?

Parameter Constrained & UnconstrainedApproaches – Constrained Approach

• Kenny & Judd (1984) proposed an ingenious heuristic model by constraining of loadings/variances of the product term

$$\eta = \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 \xi_1 \xi_2 + \xi$$



$$x_1 = \xi_1 + \delta_1$$
 $x_2 = \lambda_2 \xi_1 + \delta_2$ $x_3 = \xi_2 + \delta_3$ $x_4 = \lambda_4 \xi_2 + \delta_4$

Strategies for Creating Product Indicators

2 guidelines

- use all the information (all multiple indicators should be used in forming product indictors)
- do NOT reuse information: each multiple indicator used once in forming product indicators to avoid artificially created correlated residuals (variance/covariance matrix of errors becomes diagonal)

Other possible strategies

- Use the better indicators (when cannot use all indicators)
- Use parcels (average of indicators) when there are too many indicators in a certain indep var

Parameter Constrained & UnconstrainedApproaches constrained approach (cont)

• Judd suggested using x_1x_3 , x_1x_4 , x_2x_3 , x_2x_4 as indicators of the interaction $\xi_1\xi_2$ and imposed many constraints on loadings and variances, e.g.

$$x_2 x_4 = \lambda_2 \lambda_4 \xi_1 \xi_2 + \lambda_2 \xi_1 \delta_4 + \lambda_4 \xi_2 \delta_2 + \delta_2 \delta_4$$

- Marsh et al.(2002) simulation showed: unconstrained approach is recommended for its ease in implementation and acceptable bias /precision
- Summary: mean-center all x, y indicators, create product indicator, fit model without mean structure (because software routinely centers them again)

An Appropriate Standardized Solution and Its Scale-free Properties (cont)

- appropriate std solution of interaction model not directly provided by usual commercial software
- Wen, Marsh, Hau (2010) derived appropriate std solution for latent interaction, which are scale free, SE and t-values are also scale free
- Let usual std coefficients be γ_1' , γ_2' , γ_3' , appropriate std coefficients γ_1'' , γ_2'' , γ_3'' are obtained:

$$\gamma_{1}'' = \gamma_{1}' \quad \gamma_{2}'' = \gamma_{2}' \quad \gamma_{3}'' = \gamma_{3}' \frac{\sqrt{\phi_{11} \phi_{22}}}{\sqrt{\phi_{33}}}$$
where $\phi_{11} = \text{var}(\xi_{1}) \quad \phi_{22} = \text{var}(\xi_{2})$
are from the original solutions

An Appropriate Standardized Solution and Its Scale-free Properties (cont)

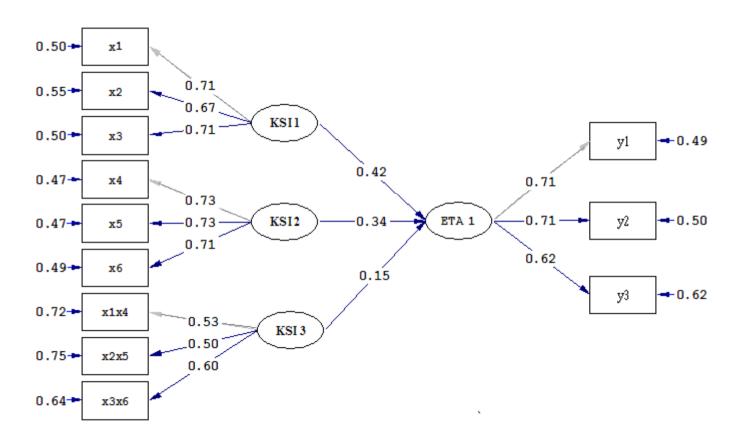
- Scale-free properties of std solution
 - Wen, Marsh, Hau (2010) proved that the appropriate std estimates have the scale-free properties → invariant when calcualted from either the centered or std data
- Calculation of SE of appropriate std coef through Bootstrap samples (similar to original estimates) → t-values of original estimates can be used to test the significance of the appropriate std estimates, if close to cutoff point use bootstrap method

Unconstrained Approaches: Examples

$$\eta = \gamma_1 \xi_1 + \gamma_2 \xi_2 + \gamma_3 [\xi_1 \xi_2 - E(\xi_1 \xi_2)] + \zeta$$

- Each latent variable has 3 indicators
- Assume η is math achievement, ξ_1 is prior math ability, ξ_2 is math motivation, $\xi_1 \xi_2$ is the interaction of prior math ability and math motivation
- y_1 to y_3 , $x_1...x_6$ centered, product indicators X_1X_4 , X_2X_5 , X_3X_6 are created, but not re-standardized
- $\gamma_1 = 0.425$, $\gamma_2 = 0.331$, $\gamma_3 = 0.197$; $\phi_{11} = 0.501$, $\phi_{22} = 0.529$, $\phi_{33} = 0.308$; and the completely standardized estimates: $\gamma_1' = 0.423$, $\gamma_2' = 0.338$ and $\gamma_3' = 0.153$. By using Formula 27, $\gamma_1'' = 0.423$, $\gamma_2'' = 0.338$, and $\gamma_3'' = 0.142$

Unconstrained Approaches: Examples (cont)



Chi-Square=37.21, df=48, P-value=0.87021, RMSEA=0.000

Robustness to Normality in Unconstrained Approach

- Considerations when normality is violated:
 - ML typically used is based on assumption of normality, however, this is a common problem to all CFA, SEM research (not specific to interaction/quadratic analyses)
 - even when ξ_1, ξ_2 are normal, the product are non-normal, constrained, partially constrained, unconstrained all suffer when ML estimation is used
 - Fortunately, ML tends to be robust to violation of normality in parameter estimates, though ML likelihood ratio test is too large, standard errors are too small under nonnormality

Distribution-analytic Approaches

- Whereas they have many desirable features, they are computationally demanding, and not available in widely accessible SEM softwares
 - Latent Moderated Structural Equation (LMS, Klein & Moosbrugger, 2000) implemented in Mplus
 - Quasi-Maximum Likelihood(QML, Klein & Muthén, 2002) available from author, not available in software yet
- QML (Klein & Muthen, 2002) was developed for more efficient estimation than LMS
- Both estimate parameters in $\eta = \alpha + \Gamma \xi + \xi' \Omega \xi + \zeta$
- LMS and QML differ in the distributional assumptions about the latent dependent variable η and its indicators
- Computationally LMS is more efficient and can be used to fit models with a larger number of nonlinear effects and interactions

Summary

- One of predictor variables is a manifest grouping variable with small number of categories → multiple group SEM, but not recommended when all predictors are continuous or based on multiple indicators
- Product-indicator dominated latent interaction research, still evolving, unconstrained approach – ease of implementation and robustness
- More recently, LMS/QML hold considerable promise over product-indicator approach
- Many issues not appropriately dealt with and applied research is limited

Thank You