

促進教師的評核素養:從PISA的研究到 科學科課堂實踐 Enhancement of Teachers' Assessment Literacy: From the PISA Study to Science Classroom Practice

劉國智教授、藍郁平博士

In PISA 2015, scientific literacy is defined as:

"Scientific Literacy (科學素養) is the ability to engage with science-related issues, and with the ideas of science, as a reflective citizen."

Framework of Scientific Literacy in PISA 2015

Source: Adapted from PISA 2015 Draft Science framework (OECD, 2013, p.12), Figure 1

Scientific Competencies Assessed in PISA 2015

Explaining Phenomena Scientifically Offer explanations for a range of natural and technological phenomena **Evaluate and design scientific enquiry** Describe and appraise scientific enquiries and propose ways of addressing questions scientifically Interpret data and evidence scientifically Analyse and evaluate scientific information, claims and arguments in a variety of representations and draw appropriate conclusions

Knowledge Assessed in PISA 2015

Content knowledge

major **explanatory ideas and theories** from the fields of physics, chemistry, biology, earth and space sciences, and how they **apply in contexts** where the elements of knowledge are interdependent or interdisciplinary

Knowledge Assessed in PISA 2015

Procedural knowledge

knowledge about the **concepts and procedures that are essential for scientific enquiry,** and that underpin the collection, analysis and interpretation of scientific data.

Epistemic knowledge (~ Nature of science)

an understanding of the **nature and origin of knowledge in science**

understand the distinction between **observations**, facts, hypotheses, models and theories, but also to understand why certain procedures, such as experiments, are central to establishing knowledge in science

Competency related to knowledge

Explaining PhenomenaContentScientificallyknowledgeEvaluate and design scientific
enquiryProcedural
knowledgeInterpret data and evidence
scientificallyEpistemic
knowledge

CONTEXTS

	Personal	local/national	Global
Health	Maintenance of health, accidents, nutrition	Control of disease, social transmission, food choices, community health	Epidemics, spread of infectious diseases
Natural resources	Personal consumption of materials and energy	Maintenance of human populations, quality of life, security, production and distribution of food, energy supply	Renewable and non-renewable, natural systems, population growth, sustainable use of species
Environment	Environmentally friendly actions, use and disposal of materials and devices	Population distribution, disposal of waste, environmental impact	Biodiversity, ecological sustainability, control of pollution, production and loss of soil/biomass
Hazard	Risk assessments of lifestyle choices	Rapid changes (e.g. earthquakes, severe weather), slow and progressive changes (e.g. coastal erosion, sedimentation), risk assessment	Climate change, impact of modern communication
Frontiers of science and technology	Scientific aspects of hobbies, personal technology, music and sporting activities	New materials, devices and processes, genetic modification, health technology, transport	Extinction of species, exploration of space, origin and structure of the Universe

Mean performance in scientific literacy in PISA 2015

Country/Region	Mean	S.E.	Significance
Singapore	556	(1.2)	A
Japan	538	(3.0)	A
Estonia	534	(2.1)	
Chinese Taipei	532	(2.7)	
Finland	531	(2.4)	
Macao-China	529	(1.1)	0
Canada	528	(2.1)	0
Viet Nam	525	(3.9)	0
Hong Kong-China	523	(2.5)	
China	518	(4.6)	0
Korea	516	(3.1)	0
New Zealand	513	(2.4)	▼
Slovenia	513	(1.3)	▼
Australia	510	(1.5)	▼
United Kingdom	509	(2.6)	▼

Science Performance in different areas of competency

		Mean perf cor	formance on ea npetency subsc	ch science ale
	Overall science scale	Explain phenomena scientifically	Evaluate and design scientific enquiry	Interpret data and evidence scientifically
Singapore	556	553	560	556
Japan	538	539	536	541
Estonia	534	533	535	537
Chinese Taipei	532	536	525	533
Finland	531	534	529	529
Масао	529	528	525	532
Canada	528	530	530	525
Hong Kong	523	524	5 2 4	521
China	518	520	517	516
Korea	516	510	515	523

*Blue is significantly higher than red

	Mean performance	Mean perfor science know	rmance in each vledge subscale
	(overall science scale)	Content knowledge	Procedural and epistemic knowledge
Singapore	556	553	558
Japan	538	539	538
Estonia	534	534	535
Chinese			
Taipei	532	538	528
Finland	531	534	528
Macao	529	(527)	531
Canada	528	528	528
Hong Kong	523	526	521
China	518	520	516
Korea	516	513	519

*Blue is significantly higher than red

Using PISA framework to improve our own assessment

Using PISA framework to improve our own assessment

- Understand and review critically the subject you are teaching from an international perspective
- You can use the classification table to classify and analyse the test items beyond the PISA items
- Assessment: not only on content knowledge but also on process skills
- Understand student ability
- Understand item difficulty
- Assessment of, for, as Learning

Classification of item

			•		
Question type					
	Closed Constructed Response (i.e. short answer)				
	Open Response	(i.e. give explana	tion on somethin	ng)	
Competencies	🗆 Explain phenome	ena scientifically			
	Evaluate and des	ign scientific enc	quiry		
	Interpret data ar	nd evidence scier	ntifically		
Domain of knowledge	Content Knowledge	e:			
	□ Physical systems				
	Earth and space s	systems			
	Living systems				
	Procedural and Epistemic Knowledge:				
	Procedural Knowledge				
	Epistemic Knowledge				
Application area	Health Natural Resources Hazards Environment				
	Frontiers				
Item Focus	Global 🗆 local/national 🗆 Personal				
Cognitive demand	🗆 High 🔳 Medium 🗆 Low				
Item difficulty level	□Level 6 ■ Level 5 □ Level 4 □ Level 3 □ Level 2 □ Level 1				
Comment/Reference	International average				
		Hong Kong	(53 countries)		
	% correct	20.8 %	29.8 %		
				HKCISA	

周鴻騰(台灣PISA 種子教師):

|其實我不斷回到 PISA 的理論基礎及素養架構說明、PISA 評分 規準、分類方式及材料選取的技巧、以及不斷觀摩之前的試題。也不 斷在實作過程中,將問題提出進行小組討論與決策。透過本次研習出 題經驗,也讓自己發揮創意、活用教材、了解 PISA 測驗的出題技巧, 是一個很不賴的學習。

(取自"PISA 科學素養評量手冊")

http://pisa.nutn.edu.tw/sample_tw.htm

Computer-based Items

Interactive items

Example: RUNNING IN HOT WEATHER

RUNNING IN HOT WEATHER

During long-distance running, body temperature rises and sweating occurs.

If runners do not drink enough to replace the water they lose through sweating, they can experience dehydration. Water loss of 2% of body mass and above is considered to be a state of dehydration. This percentage is labeled on the water loss meter shown below.

If the body temperature rises to 40°C and above, runners can experience a life-threatening condition called heat stroke. This temperature is labeled on the body temperature thermometer shown below.

PISA 2015

?

Running in Hot Weather

Introduction

This simulation is based on a model that calculates the volume of sweat, water loss, and body temperature of a runner after a one-hour run.

To see how all the controls in this simulation work, follow these steps:

- 1. Move the slider for Air Temperature.
- 2. Move the slider for Air Humidity.
- 3. Click on either "Yes" or "No" for Drinking Water.
- 4. Click on the "Run" button to see the results. Notice that a water loss of 2% and above causes dehydration, and that a body temperature of 40°C and above causes heat stroke. The results will also display in the table.

Note: The results shown in the simulation are based on a simplified mathematical model of how the body functions for a particular individual after running for one hour in different conditions.

,	Air Temperature (°C)	Air Humidity (%)	Drinking Water	Sweat Volume (Litres)	Water Loss (%)	Body Temperature (°C)

PISA 2015

Running in Hot Weather

Question 3 / 6

How to Run the Simulation

Run the simulation to collect data based on the information below. Click on a choice, select data in the table, and then type an explanation to answer the question.

When the air humidity is 60%, what is the effect of an increase in air temperature on sweat volume after a one-hour run?

- Sweat volume increases
- Sweat volume decreases

- Q03

X Select two rows of data in the table to support your answer.

What is the biological reason for this effect? - Q04

Air Temperature (°C)	Air Humidity (%)	Drinking Water	Sweat Volume (Litres)	Water Loss (%)	Body Temperature (°C)

Item Number:	S623Q03 and S623Q04			
Question type:	Q03: Simple Multiple Choice and Open Response	Q04: Open	Response	
Competency:	<i>Q03: Evaluate and Design Scientific Enquiry</i> <i>Q04: Explain Phenomena Scientifically</i>			
Knowledge category:	Q03: Procedural knowledge Q04: Content knowledge		HKCISA	SII

Items : S623Q03 & S623Q04

Go to OECD website to do the simulation

http://www.oecd.org/pisa/test/

S623Q03

Full Credit

The student selects: Sweat volume increases
AND

The two selected rows must have air humidity of 60% and two different air temperatures selected (one lower and one higher). In addition, drinking water must have the same setting (either "Yes" or "No") in both of the selected rows.

S623Q04

Full Credit

The student's response indicates or implies the function of sweat in cooling the body and/or regulating body temperature.

 Sweat evaporates to cool the body when temperatures are high.

	% correct (in PISA 2015 FT)		
	Hong Kong	International (53 countries)	
S623Q03	47.1%	44.4%	
S623Q04	12.2%	17.7%	

- For S623Q03, HK students, on average, outperformed international students from 53 countries
- For S623Q04, it requires students to draw on their knowledge of biology (content knowledge) to explain that sweating cools the body at higher temperatures
- The cognitive demand: medium, but the mean score of 53 countries is only 18%.
- The performance of Hong Kong students : very poor (% correct: 12 %). 15-year-old HK students did not learn this topic in school.

FISA 2013

Running in Hot Weather

Question 5/6

How to Run the Simulation

Run the simulation to collect data based on the information below. Click on a choice, select data in the table, and then type an explanation to answer the question.

The simulation allows you to choose 20%, 40% or 60% for air humidity.

Do you expect that it would be safe or unsafe to run while drinking water with the air humidity at 50% and air temperature of 40°C?

Safe

O Unsafe

X Select two rows of data to support your answer.

Explain how this data supports your answer.

J.	3 2 1 1 0		5 4 3 2 1 1 0	hydration	42 - 41 - 40 - 39 - 38 - 37 - 36 -
	S Volum	weat ne (Litres)	Wate Loss (ir %)	Body Temperature (°C)
Air Temperature (° Air Humidity (%) Drinking Water	C) 22	20 25 30 20 40 20 40 20 Yes O N	35 40 60		Run
Air Temperature (°C)	Air Humidity (%)	Drinking Water	Sweat Volume (Litres)	Water Loss (%)	Body Temperature (°C)

Students need to use the simulation to develop a hypothesis about the safety of running at 40°C at 50% humidity (a humidity value that cannot be set on the slider)

Item Number	S623Q06
Competency	Evaluate and Design Scientific Enquiry
Knowledge	Procedural
Cognitive Demand	High

Item : S623Q06

Go to OECD website to do the simulation

http://www.oecd.org/pisa/test/

Full Credit

The student selects **Unsafe**

AND

The two rows selected have 40% humidity at 40°C with Drinking Water=Yes and 60% humidity at 40°C with Drinking Water=Yes AND

The student gives an explanation that indicates that with the runner suffering from heat stroke at both 40% and 60% humidity, there is a risk of heat stroke at 50% humidity in the same conditions.

Partial Credit

The student selects Unsafe AND Correct rows are selected AND The student's explanation is missing, unclear or incorrect. OR

The student selects **Unsafe** AND Correct rows are **not** selected AND The student gives a correct explanation referring to results from the simulation.

	% correct (in PISA 2015 FT)				
	International				
	Hong Kong	(53 countries)			
S623Q06	57.3%	37.6%			

- This item uses a simulation to assess scientific enquiry processes not assessed in the paper-based booklets.
- % correct: the mean score of 53 countries (38%) vs Hong
 Kong (57%).
- Reasons for Hong Kong's good performance ?

29

Coding (Marking) Student Answers

Item Labels and Coding (Marking)

□ Items that have to be coded by coders: FOSSIL FUELS S613Q02 – 01 11 12 21 99 BEE COLONY COLLAPSE S600Q04 – 0 1 9

Items that are scored automatically by computer (multiple-choice and complex multiple-choice items): VOLCANIC ERUPTIONS S644Q01

Layout of the Coding Guide

Coding (Marking)

General principles for coding

- Spelling and grammar
- Exercising judgement
- Common problems

Spelling and Grammar

- The PISA science assessment is not a test of written expression
- Every effort should be made to understand what the student means
- Spelling and gramma mistakes should be ignored unless they make it impossible to determine what the student means (key words?)

Principles for Exercising Judgement

- 34
- The labels "Full Credit", "Partial Credit" and "No Credit" divide responses into three groups according to the degree to which the responses answer the question.
 - They indicate the level of response expected of a 15-year-old
- "Full Credit" responses may not necessarily be fully correct or perfect responses.
 - Don't apply a "deficit model" (deduct if fall short of a perfect answer)
- Benefit of the doubt (to the student)
 - Should not assume students do not know

Common Problems in Coding

- Answers comprises a correct/partly correct part (A) and yet another part (B)
 - If B contradicts A: no credit
 - If B is irrelevant to the Q count A only
- Wrong Response Formats
 - Examples: Instead of checking "Yes" or "No", the student writes "Yes" or "No"
 - Forget the format

MC - Bird Migration

Item context

Bird migration is a seasonal large-scale movement of birds to and from their breeding grounds. Every year volunteers count migrating birds at specific locations. Scientists capture some of the birds and tag their legs with a combination of coloured rings and flags. The scientists use sightings of tagged birds together with volunteers' counts to determine the migratory routes of birds.

Q1 大部分候鳥先在一個地區聚集,然後大群地遷 徙,而不是個別地遷徙。這種行為是進化的結果 。下列哪一項是對大多數候鳥進化出這種行為的 最佳的科學解釋?

A. 個別或小群地遷徙的鳥類,較不可能生存和繁衍。
B. 個別或小群地遷徙的鳥類,較有可能找到充足食物
C. 大群地飛行可容許其他種類的鳥兒加入遷徙行列。
D. 大群地飛行可以讓每一隻鳥更有機會找到築巢地方

Think about the answer and do the Kahoot test 1

Competency	Explain Phenomena Scientifically
Knowledge System	Content - Living
Context	Global - Environmental Quality
Difficulty	501 - Level 3

	Α	B	С	D
% of HK	52	15	16	17

	Hong Kong	Macao	B-S-J-G (China)	Таіреі	Singapore	Japan	Korea	Canada	Estonia	Finland	OECD average
%	52.00	56.04		50.44	<u> </u>	67.00	50.40	60.06	74.04	62.24	57.04
correct	52.09	56.81	62.66	52.14	68.97	67.03	59.49	60.96	/4.24	63.24	57.84

Any explanations on HK students' performance on that item?

- learning about bird migration and tagging
- Leaning about evolution survival of fitness

Q2 指出一個可能造成義工們點算候鳥的 數目不準確的因素,並解釋這因素是 如何影響義工點算的結果。

- 1. Write your answer in the worksheet.
- Mark the students' answers in the worksheet (0/1).
- 3. Do Kahoot test 2.

Coding guide

Full Credit

The student identifies at least one specific factor that can affect the accuracy of counts by observers.

- The observers may miss counting some birds because they fly high.
- If the same birds are counted more than once, that can make the numbers too high.
- For birds in a large group, volunteers can only estimate how many birds there are.
- The observers might be wrong about what kind of bird they are, so the numbers of that kind of bird will be wrong.
- The birds migrate at night. (marginal?)
- Volunteers will not be everywhere the birds migrate. (marginal?)
- The observers can make a mistake in counting. (marginal?)
- Clouds or rain hide some of the birds.

No Credit: Other responses, including those that confuse the roles of the scientists and the volunteers.

- Volunteers make errors [Too general]
- Volunteers are not as accurate as scientists [Too general]
- Because they capture some of the birds, not all.

Competency	Evaluate and design scientific enquiry
Knowledge System	Procedural - Living
Context	Global - Environmental Quality
Difficulty	630 - Level 4

	Hong Kong	Macao	B-S-J-G (China)	Chinese Taipei	Singapore	Japan	Korea	Canada	Estonia	Finland	OECD average
% correct	34.98	27.98	30.40	19.21	48.58	41.78	28.97	45.57	29.81	42.19	33.08

Any explanations on HK students' performance on that item?

- Accuracy (errors) of measurement
- one's counting of birds at specific time and point → number of birds flying across a place (generalization)
- Counting of many organisms in the wild

SLOPE-FACE INVESTIGATION

A group of students notices a dramatic difference in the vegetation on the two slopes of a valley: the vegetation is much greener and more abundant on slope A than on slope B. This difference is shown in the illustration on the right.

The students investigate why the vegetation on the slopes is so different from one slope to the other. As part of this investigation, the students measure three environmental factors over a given period of time:

- Solar radiation: how much sunlight falls on a given location
- Soil moisture: how wet the soil is in a given location
- Rainfall: how much rain falls on a given location

SLOPE-FACE INVESTIGATION Data Collection

The students place two of each of the following three instruments on each slope, as shown below.

Solar radiation sensor: measures the amount of sunlight, in megajoules per square metre (MJ/m²)

Soil moisture sensor: measures the amount of water as a percentage of a volume of soil

Rain gauge: measures the amount of rainfall, in millimetres (mm)

在調查兩邊斜坡 植被生長情況的 **同,學生為甚** 麼在每邊的斜坡 上均放置兩套儀

- 1. Write your answer in the worksheet.
- 2. Mark the students' answers in the worksheet (0/1).
- 3. Do Kahoot test 3.

減少數據出現誤差	
To increase the reliability of the test	
因為須要用兩個測試结果作比較.	
因為這樣可以量度兩個斜率不同的斜坡在不同高度 下各項數據,可加以比對。	
來集齊數據。	
control experiment	
因為要進行公平測試	
因為只是斜坡的其中一個部份,並不能夠完全代表 整個斜坡,為了得到更確實的數據,所以需要放置 兩套儀器。	
令結果更容觀更準確因在同一個斜坡上的環境因素 會有變化	
	減少數據出現誤差 To increase the reliability of the test 因為須要用兩個測試结果作比較. 因為這樣可以量度兩個斜率不同的斜坡在不同高度 下各項數據,可加以比對。 來集齊數據。 control experiment 因為要進行公平測試 因為只是斜坡的其中一個部份,並不能夠完全代表 整個斜坡,為了得到更確實的數據,所以需要放置 兩套儀器。 令結果更容觀 更準確因在同一個斜坡上的環境因素 會有變化

Coding guide

Full Credit

The student gives an explanation that identifies a scientific advantage of using more than one measurement instrument on each slope, e.g. correcting for variation of conditions within a slope, increasing the precision of measurement for each slope.

- So they could determine whether a difference between slopes is significant.
- Because there is likely to be variation within a slope.
- To increase the precision of the measurement for each slope.
- The data will be more accurate. (marginal)
- In case one of the two malfunctions
- To compare different amounts of sun on a slope [A comparison implies that there may be variation.]

No Credit : Other responses

- Two are better than one.
- The slopes might be larger.
- To check if there is a difference from one side to the other.
- The data will be more equal.
- To be sure that a fair test is carried out.

Competency	Evaluate and Design Scientific Enquiry
Knowledge System	Epistemic - Earth & Space
Context	Local/ National - Natural Resources
Difficulty	517 - Level 3

Comment

This Level 3 question allows students to demonstrate their understanding of the underlying rationale for the procedure of taking two independent measures of the phenomena being investigated. Knowledge of this rationale is the aspect of this question that assesses epistemic knowledge.

	Hong		B-S-J-G	Chinese							OECD
	Kong	Macao	(China)	Taipei	Singapore	Japan	Korea	Canada	Estonia	Finland	average
% correct	49.00	59.01	50.52	80.95	76.12	53.50	62.15	64.24	70.49	52.68	52.31

Any explanations on HK students' performance on that item?

- Accuracy (errors) of measurement
- Soil moisture measured by one sensor at one point of the slope → Soil moisture of the slope (generalization)
- Replication (repeated measurement) to control confounding variables between two slopes
- Two sensors to reduce measuring error
- Repeated measurement to reduce random error

PISA 2015

Slope-Face Investigation

Question 2 / 2

Refer to "Data Analysis" on the right. Click on a choice and then type an explanation to answer the question.

Two students disagree about why there is a difference in soil moisture between the two slopes.

- Student 1 thinks that the difference in soil moisture is due to a difference in solar radiation on the two slopes.
- Student 2 thinks that the difference in soil moisture is due to a difference in rainfall on the two slopes.

According to the data, which student is correct?

Student 1

Student 2

Explain your answer.

SLOPE-FACE INVESTIGATION Data Analysis

The students take the average of the measurements collected over a given period of time from each pair of instruments on each slope and calculate the uncertainty in these averages. Their results are recorded in the following table. The uncertainty is given following the "±" sign.

	Average Solar Radiation	Average Soil Moisture	Average Rainfall
Slope A	3800 ± 300 MJ/m ²	28 ± 2%	450 ± 40 mm
Slope B	7200 ± 400 MJ/m ²	18 ± 3%	440 ± 50 mm

Scoring

Full Credit

The student selects Student 1

AND

Gives an explanation that indicates that there is a difference in solar radiation between the two slopes **and/or** that rainfall does not show a difference.

- Slope B gets much more solar radiation than slope A, but the same amount of rain.
- There is no difference in the amount of rainfall the two slopes get.
- There is a big difference in how much sunlight slope A gets compared to slope B.

Comment:

Students are asked to demonstrate an understanding of how measurement error affects the degree of confidence associated with specific scientific measurements, one major aspect of epistemic knowledge.

Competency	Interpret data and evidence scientifically
Knowledge System	Epistemic - Earth & Space
Context	Local/ National - Natural Resources
Difficulty	589 - Level 4

	Hong Kong	Macao	B-S-J-G (China)	Taipei	Singapore	Japan	Korea	Canada	Estonia	Finland	OECD average
%											
correct	36.15	37.69	39.77	43.23	47.08	49.27	40.30	43.01	49.96	44.42	34.86

Any explanations on HK students' performance on that item?

- Accuracy (errors) of measurement → uncertainty/confidence
- Covariation to support causation
 change of solar radiation → change of soil moisture

	Average Solar Radiation	Average Soil Moisture	Average Rainfall
Slope A	3800 ± 300 MJ/m ²	28 ± 2%	450 ± 40 mm
Slope B	7200 ± 400 MJ/m ²	18 ± 3%	440 ± 50 mm

(5 4 3 1 2 1 1 1 0	hydration	42 41 - 40 - 39 - 38 - 37 - 36 -	
Air	Sweat Volume (Litres) Water Loss (%) Body Temperature (°C) Air Temperature (°C) 20 25 30 35 40 20 40 60 60						
Air I Drir	Air Humidity (%)						
A	vir Temperature (°C)	Air Humidity (%)	Drinking Water	Sweat Volume (Litres)	Water Loss (%)	Body Temperature (°C)	

Multiple variables

Only one IV should be changed at a time, while other IV controlled \rightarrow fair test

RESOURCES

Teacher's Guides (HKCISA Centre)

This e-book can be downloaded from OECD website

PISA released items (Online version)

• OECD website: http://www.oecd.org/pisa/test/

PISA and STEM

STEM education: Assessment ?
 Make good use of the PISA released items
 e.g 魚菜共生– "sustainable fish farming"

Concluding Remarks

- In PISA 2015, a few interactive CBA items have been designed and used to demonstrate and explore the role multivariate modelling is playing in science.
- Teachers can make good use of the released items => please refer to Teacher's Guides and the OECD website

Concluding Remarks

- Use of the PISA assessment framework -Enable teachers to classify assessment items based on several essential aspects: competency areas, knowledge type, topic and cognitive demand.
- Balanced assessments in terms of item format, competency areas and cognitive demand (i.e. cater for learners' diversity)

Concluding Remarks

- Assessment in HK is probably too strict, excluding some answers that is reasonable and showing student understandings not quite explicitly
- Reliability of assessment does not mean validity of assessment
- Strict and narrow answers expected of students do not mean high learning standards, but simply promote exam-drilling

Procedural and epistemic knowledge of science

Students should be engaged more on:

- thinking about the reasons why an experiment has to be done that way, rather than routine control of variables and repeated measures
- thinking about the various sources of errors random, systematic, bias, sampling, uncontrolled variables...
- doing simulation experiments involving more complex variables and design

